
Hypervalent lodine Mediated Synthesis of C-2 *Deoxy* Glycosides and Amino Acid Glycoconjugates

Maidul Islam, Nishanth D. Tirukoti, Shyamapada Nandi, and Srinivas Hotha*

Department of Chemistry, Indian Institute of Science Education and Research, Pune 411 008, India

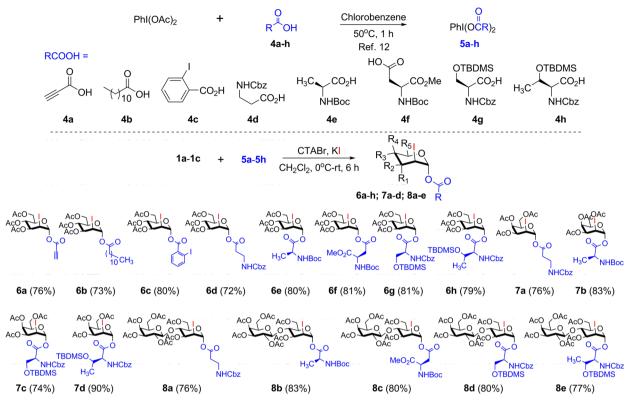
Supporting Information

ABSTRACT: A simple, efficient, and practical method for the synthesis of *C*-2 *deoxy*-2-iodo glycoconjugates in self-assembled structures was found using $PhI(OCOR)_2$. 2-Iodo glycoserinyl esters were intramolecularly converted into 2-iodo serinyl glycosides which upon dehalogenation gave *C*-2 *deoxy* amino acid glycoconjugates.

INTRODUCTION

Stereo- and regioselective reactions are well sought after in organic chemistry; frequently, stereo- and regioselectivities are obtained by taking advantage of steric environments such as chiral auxiliaries, reagents, and solvents.1 The utility of selfassembled structures for the above is a promising alternative.² It is desirable that the self-assembled structure (i) is stable at the temperature of the reaction; (ii) does not react with reagents; (iii) does not disassemble during the reaction; and (iv) should be accessible from simple precursors. It is known that cetylammonium bromide (CTAB) forms organic solvent-stable surfactant-assembled lipophilic nanoreactors.³ Addition of polyvalent iodine reagents onto electron-rich π -systems was found to be suitable for the current investigation since various iodobenzene dicarboxylates react with electron-rich π -systems.⁴ Earlier studies showed that indenes can be regioselectively functionalized using PhI(OAc)₂ in CTAB derived nanoreactors.5

Easily available glycals possess an electron-rich π -bond, and the utility of hypervalent iodine (I^{III}) reagents on glycals was studied for the selective C3-O-oxidation, C-2 heteroatom substitution, and oxidative glycosidation.^{6,7} In this premise, regioselective iodination of glycals has been hypothesized through surfactant-assembled structures by using CTAB and polycoordinated iodine reagents for the synthesis of 2-*deoxy*-2iodo acetates. Notably, 2-*deoxy*-2-iodo glycopyranosyl acetates are important precursors for the synthesis of 2-*deoxy*-, 2-alkyl, and 2-amino glycosides. Biological significance and their versatility coupled with the challenge of synthesizing 2-*deoxy*glycopyranosides⁷ had attracted many researchers to develop strategies for their synthesis utilizing hypervalent iodine reagent,^{7a-h} de novo,⁸ and dehydrative⁷¹ glycosidation. 2-*Deoxy*-glycopyranosides can be accessed through moderately stable C-2 triflates,⁹ or by the addition of electrophilic iodine in a poorly regioselective manner to the electron rich π -bond of glycals.⁷ Therefore, we thought of studying the reaction of hypervalent iodination on glycals in the presence of CTAB-assembled self-assembled structures for the regioselective synthesis of 2-*deoxy*-glycosides.


RESULTS AND DISCUSSION

To begin our investigation, a CH_2Cl_2 solution of per-O-acetyl glucal **1a** at 0 °C was added to PhI(OAc)₂, CTAB, and KI. The resulting turbid solution was stirred at room temperature for 6 h to observe the formation of two inseparable products **2a** and **3a** in a 95:5 ratio which were characterized by NMR and MS analysis (Scheme 1);¹⁰ importantly, no regioisomeric mixture was noticed. The origin of selectivity is attributed to the micellar environment as postulated earlier.^{5,10} The formation of compound **3a** is possible due to the halide counterion exchange between CTAB and KI which was confirmed through a control

Scheme	1. Synthesis of C-2	Deoxy C-2	Iodo Anomeric
Acetates	in Self Assembled	Structures	

R_{2}	R ₄	CTAB PhI(O CH ₂ Cl ₂ , 0	Ac) ₂	$R_2 \xrightarrow{R_3 R_1}{R_1}$	T-10) + DAc	R ₂ R ₁ OAc
1a	-1c			2a	a-2c		3a-3c
No.	R ₁	R ₂	R_3	R ₄	Х	% Yield	Ratio
1a	-OAc	-OAc	-H	-CH ₂ OAc	Т	85	2a:3a = 95:5
	-OAc	-OAc	-H	-CH ₂ OAc	Br	71	2a:3a = 0:100
1b	-OAc	-H	-OAc	-CH ₂ OAc	Т	80	2b:3b = 94:5
1c	-OAc	AcO OAc AcO OAc OAc	-H	-CH ₂ OAc	Ι	75	2c:3c = 95:5

Received: February 26, 2014 Published: April 22, 2014 Scheme 2. Hypervalent Iodine for the Synthesis of C-2 Deoxy-2-iodo Anomeric Esters

experiment wherein KBr was added in place of KI to observe compound **3a** only (Scheme 1).

A regioisomeric mixture of products was noticed in the absence of CTAB. In addition, it is desirable to maintain the CTAB concentration at a critical micellar concentration (CMC) at 10 mol % for 15 mL in order to obtain selfassembled structures; 5a,10 otherwise, a regioisomeric mixture of iodoacetates is observed. Both iodo- (2a) and bromo- (3a)saccharides can be subjected to the Bu₃SnH/AIBN reaction to obtain corresponding 2-deoxy derivatives.¹¹ Furthermore, anomeric esters are important as they can be easily activated by the addition of Lewis acids to obtain a variety of glycosides. A similar reaction between per-O-acetyl galactal and PhI(OAc)₂ in CTAB and KI gave corresponding iodo acetate 2b and bromo acetate **3b** with a 94:5 ratio of **2b**:**3b** (Scheme 1). Acetyl groups of the iodobenzene diacetate can be exchanged with carboxylic acids by slow evaporation of a solution of an equimolar mixture of $PhI(OAc)_2$ and carboxylic acid (4a-4h) in chlorobenzene around 50 °C over 1 h.12 The exchange reaction worked well, and various PhI(OCOR)₂ compounds (5a-5h) were synthesized. Further, the generality of the regioselective halo ester glycoside synthesis was investigated with hypervalent iodine esters 5a-5h.

Gratifyingly, the formation of iodo ester glycosides in very good yield along with a minor amount of bromo esters was noticed. For example, the reaction between glucal and iodoso esters 5a-h gave 2-*deoxy*-glycosyl esters 6a-h in very good yields (Scheme 2).¹⁰ Similar products in good yields were noticed with galactal (1b) and lactal (1c) to give products 7a-d and 8a-e in good yields with selected phenyl iodosoesters (Scheme 2). Good quality crystals of compound 6e could be obtained by slow evaporation from ethyl acetate and light petroleum (60-80 °C) and was subjected to X-ray structure determination.^{10,13} The crystal structure of compound 6e

confirmed the presence of an iodo group in the mannoconfiguration and α -configured ester moiety.^{10,13}

Amino acid glycoconjugates are interesting since they can be easily converted to *N*-carboxy anhydrides (NCAs) for the synthesis of glycopolypeptides by ring-opening polymerization with amines in the presence of proton sponge.¹⁴ Additionally, amino acid glycoconjugates **6g**, **6h**, **7c**, **7d**, **8d**, and **8e** are correctly positioned to undergo intramolecular glycosidation in the presence of a suitable Lewis acid. The activator not only is able to cleave the silyl ether to give **A**, but also can perform as a Lewis acid to facilitate the departure of the anomeric ester. The resulting intermediate can further be attacked by the nucleophile in an intramolecular fashion to result in acid **B** (Figure 1). Subsequently, radical deiodination should give access to 2-*deoxy* glycosides.

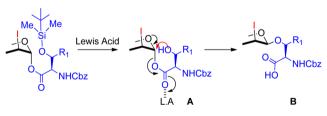
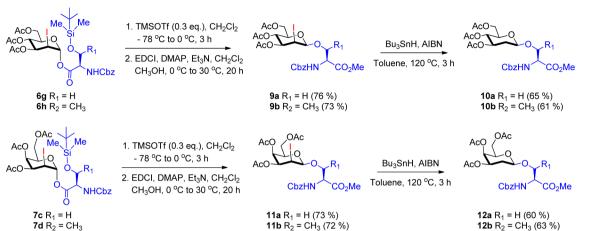



Figure 1. Rationale for the intramolecular aglycon delivery.

The biological significance of many natural products was found to be dependent on the presence of 2-*deoxy* glycosides.¹⁵ However, the stereoselective synthesis of 2-*deoxy* glycosides is still a challenge due to the absence of any directing group at the *C*-2 position.¹⁶ It is interesting to observe that NIS mediated amino acid glycoconjugate synthesis from glycals results^{16a} in the 2-iodo α -glycosides whereas the current protocol gives access to β -glycosides in a stereoselective fashion.

After several experiments with amino acid glycoconjugate 6g, a catalytic amount of TMSOTf in CH₂Cl₂ at -78 °C was found to be suitable for this transformation (Scheme 3). Initially, cleavage¹⁷ of silvl ether was noticed by TLC-MS analysis that subsequently was converted to C-2-iodo serinyl glycoside as a carboxylic acid in a very good yield; the acid was easily purified by converting it to the corresponding methyl ester 9a under EDCI/DMAP/MeOH conditions (Scheme 3). Similar results were also observed with the threonine derivative 6h to obtain 9b in good yield. In addition, galacto-derived serine and threonine anomeric esters 7c and 7d also underwent the intramolecular glycosidation to give β -galactosyl amino acid glycoconjugates 11a and 11b. Compounds 9a-b and 11a-b were successfully subjected to radical mediated deiodination¹¹ using Bu₃SnH and AIBN in toluene at 120 °C to obtain 2-deoxy β -glycosides 10a-b and 12a-b which are otherwise fairly difficult to synthesize in a stereoselective manner.

CONCLUSIONS

We have identified a practical, efficient, simple, and fully stereoselective method for the synthesis of 2-*deoxy*-2-iodo glycosides in self-assembled structures. Various 2-iodo glycosyl esters were synthesized in a stereoselective fashion. Intramolecular glycosidation of anomeric serinyl esters afforded β serinyl glycosides, and the radical mediated deiodination at C-2 position resulted in 2-*deoxy* serinyl glycosides. Further investigation on the utilization of 2-*deoxy* serinyl glycosides for the synthesis of glycopolypeptides and other materials is currently underway.

EXPERIMENTAL SECTION

General Methods. Unless otherwise noted, materials were obtained from commercial suppliers and were used without further purification. Unless otherwise reported all reactions were performed under an argon atmosphere. Removal of solvent *in vacuo* refers to distillation using a rotary evaporator attached to an efficient vacuum pump. Products obtained as solids or syrups were dried under high vacuum. Analytical thin-layer chromatography was performed on precoated silica plates (F_{254} , 0.25 mm thickness); compounds were visualized by UV light or by staining with anisaldehyde spray. Optical rotations were measured on a polarimeter. IR spectra were recorded on an FT-IR spectrometer. NMR spectra were recorded on either a 400 or 500 MHz spectrometer with CDCl₃ as the solvent and TMS as the internal standard. High resolution mass spectroscopy (HRMS) was performed using a TOF mass analyzer. Low resolution mass spectroscopy (LRMS) was performed on UPLC-MS.

Procedure for the Synthesis of Compounds 2a. A two-neck round-bottom flask containing glucal (0.272 g, 1.0 mmol), anhydrous MgSO₄ (0.5 g), and CH₂Cl₂ (15 mL) at 0 °C was added to PhI(OCOCH₃)₂ (0.644 g, 2.0 mmol), CTAB (0.039 g, 10 mol %), and KI (0.166 g, 1.0 mmol). The reaction mixture was stirred at 25 °C for 6 h and diluted with water and extracted with CH₂Cl₂ (3×25 mL), and the combined organic portions were washed with aq. sodium bicarbonate and brine solution (2×10 mL), dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The resulting crude residue was purified by silica gel column chromatography using ethyl acetate and light petroleum ether (bp 60–70 °C) to obtain compound 2a (0.389 g, 85%) as a colorless thick syrup. The same general procedure was adopted for synthesizing compounds 2a–2c, 3a, 6a–6h, 7a–7d, and 8a–8e.

Synthesis of Compound 9a. To C-2 deoxy 2-iodo amino acid glycoconjugate 6g (0.750 g, 1.00 mmol) in CH₂Cl₂ (10 mL) was added 4 Å molecular sieves powder (0.5 g) at room temperature. After stirring for 30 min, the reaction mixture was cooled to -78 °C and TMSOTf (45 μ L, 0.25 mmol) was added and stirred for 30 min. The reaction mixture was slowly warmed to 0 °C and stirred for 3 h, diluted with CH₂Cl₂, and filtered through Celite. The filtrate was subsequently neutralized with excess triethylamine and concentrated in vacuo, and the residue was purified by silica gel column chromatography to give 2-iodo acid which was directly used for esterification. 2-Iodo acid (0.637 g, 1.00 mmol) was redissolved in CH₂Cl₂ (10 mL), and MeOH (61 µL, 1.5 mmol) was added followed by cooling to 0 °C. 1-(3-(Dimethylamino)propyl)-3-ethyl carbodiimide (EDCI) (0.249 g, 1.30 mmol), Et₃N (181 µL, 1.30 mmol), and DMAP (0.030 g, 0.25 mmol) were added and stirred for 20 h at 25 °C. The reaction was quenched with water and extracted with CH₂Cl₂ (2 \times 25 mL). The combined organic layers were washed with saturated NaHCO₃, water, and brine, dried, and concentrated in vacuo to obtain a residue that was purified by silica gel column chromatography using EtOAc and light petroleum (bp 60-70 °C) to afford compound 9a (0.485 g, 76%) as a colorless thick syrup. The same general procedure was adopted for synthesizing compounds 9b and 11a-11b.

Compound 2a. This compound is prepared using the abovementioned general procedure using **1a** (0.272 g, 1 mmol) as the starting material. Yield: (0.389 g, 85%); $[\alpha]_D = +31.2$ (c = 1.0, CHCl₃); ¹H NMR (399.78 MHz, CDCl₃) δ 2.07 (s, 3 H), 2.11 (s, 3H), 2.12 (s, 3H), 2.17 (s, 3H), 4.11 (ddd, 1H, J = 7.4, 4.9 Hz), 4.16 (dd, 1H, J = 12.3, 4.4 Hz), 4.23 (dd, 1H, J = 12.3, 4.4 Hz), 4.53 (dd, 1H, J = 4.3, 1.5 Hz), 4.59 (dd, 1H, J = 9.5, 4.4 Hz), 5.46 (t, 1H, J = 9.6Hz), 6.39 (s, 1H); ¹³C NMR (100.53 MHz, CDCl₃) δ 20.6, 20.7, 20.9, 20.9, 27.1, 61.8, 67.0, 68.6, 71.4, 94.7, 168.2, 169.3, 169.9, 170.7; IR (CHCl₃) ν 2925, 1747, 1216, 1048 cm⁻¹; HRMS (TOF) m/z [M + Na]⁺ calcd for C₁₄H₁₉INaO₉ 480.9971, found 480.9979.

Compound 2b. This compound is prepared using the abovementioned general procedure using **1b** (0.272 g, 1 mmol) as the starting material. Yield: (0.367 g, 80%); $[\alpha]_{\rm D} = +43.2$ (c = 1.0, CHCl₃); ¹H NMR (399.78 MHz, CDCl₃) δ 1.98 (s, 3H), 2.03 (s, 3H), 2.08 (s, 3H), 2.13 (s, 3H), 4.12 (d, 2H, *J* = 6.6 Hz), 4.20–4.23 (m, 1H), 4.34 (td, 1H, *J* = 6.7, 1.9 Hz), 4.83 (t, 1H), 5.35–5.39 (m, 1H), 6.44 (d, 1H); ¹³C NMR (100.53 MHz, CDCl₃) δ 18.8, 20.6, 20.8, 20.9, 28.9, 61.4, 64.7, 64.8, 69.0, 96.0, 168.2, 169.6, 170.0, 170.4; IR (CHCl₃) ν 2925, 1745, 1219, 1143 cm⁻¹; HRMS (TOF) *m*/*z* [M + Na]⁺ calcd for calcd for C₁₄H₁₉INaO₉ 480.9971, found 480.9979.

Compound 2c. This compound is prepared using the abovementioned general procedure using 1c (0.560 g, 1 mmol) as the starting material. Yield: (0.560 g, 75%); $[\alpha]_D = +17.0$ (c = 1.0, CHCl₃); ¹H NMR (399.78 MHz, CDCl₃) δ 1.98 (s, 3H), 2.07 (s, 9H), 2.14 (s, 3H), 2.16 (s, 3H), 2.17 (s, 3H), 3.91–3.96 (m, 1H), 4.07 (dd, 1H, J = 11.1, 6.9 Hz), 4.19 (m, 4H), 4.54 (dd, 1H, J = 12.1, 1.8 Hz), 4.60 (d, 1H, J = 7.9 Hz), 4.71 (dd, 1 H, J = 3.9, 1.6 Hz), 5.00 (dd, 1H, J = 10.4, 3.5 Hz), 5.17 (dd, 1H, J = 10.4, 8.0 Hz), 5.36–5.38 (m, 1H), 5.43 (dd, 1H, J = 8.9, 3.9 Hz), 6.22 (d, 1H, J = 1.3 Hz); ¹³C NMR (100.53 MHz, CDCl₃) δ 20.5, 20.6 (4C), 20.8, 20.8, 22.6, 52.1, 61.1, 61.2, 66.7, 68.3, 69.1, 70.7, 70.9, 72.5, 73.4, 90.7, 101.2, 169.2, 169.4, 170.1, 170.1, 170.1, 170.3, 170.4; IR (CHCl₃) ν 2930, 1746, 1221, 1053 cm⁻¹; HRMS (TOF) m/z [M + Na]⁺ calcd for C₂₆H₃₅INaO₁₇ 769.0817, found 769.0816.

Compound 3a. This compound is prepared using the abovementioned general procedure using **1a** (0.272 g, 1 mmol) as the starting material. Yield: (0.292 g, 71%); $[\alpha]_D = +31.0$ (c = 1.0, CHCl₃); ¹H NMR (399.78 MHz, CDCl₃) δ 2.07 (s, 3H), 2.11 (s, 6H), 2.18 (s, 3H), 4.11 (ddd, 1H, J = 10.0, 4.5, 2.5 Hz), 4.15 (dd, 1H, J =12.4, 2.4 Hz), 4.24 (dd, 1H, J = 12.4, 4.5 Hz), 4.44 (dd, 1H, J = 3.9, 1.7 Hz), 5.20 (dd, 1H, J = 9.7, 4.0 Hz), 5.49 (t, 1H, J = 9.8 Hz), 6.32 (d, 1H, J = 1.5 Hz); ¹³C NMR (100.53 MHz, CDCl₃) δ 20.5, 20.6, 20.7, 20.8, 47.8, 61.8, 65.5, 68.7, 71.2, 93.1, 168.0, 169.2, 170.0, 170.6; IR (CHCl₃) ν 2925, 1745, 1219, 1143 cm⁻¹; HRMS (TOF) m/z [M + Na]⁺ calcd for C₁₄H₁₉BrNaO₉ 433.0110, 435.0090, found 433.0078, 435.0087.

Compound 6a. This compound is prepared using the abovementioned general procedure using **1a** (0.272 g, 1 mmol) as the starting material. Yield: (0.356 g, 76%); $[\alpha]_{\rm D}$ = +61.0 (*c* = 1.0, CHCl₃); ¹H NMR (399.78 MHz, CDCl₃) δ 2.08 (s, 3H), 2.12 (s, 3H), 2.12 (s, 3H), 3.07 (s, 1 H), 4.13–4.19 (m, 2 H), 4.24 (dd, 1H, *J* = 12.7, 4.8 Hz), 4.59 (bs, 1H), 4.60 (d, 1H, *J* = 6.0 Hz), 5.41 5.53 (m, 1H), 6.47 (s, 1H); ¹³C NMR (100.53 MHz, CDCl₃) δ 20.6, 20.7, 20.9, 26.2, 61.6, 66.7, 68.4, 71.8, 73.3, 77.1, 96.0, 149.7, 169.3, 169.8, 170.6; IR (CHCl₃) ν 3258, 2950, 1741, 1145, 1059 cm⁻¹; HRMS (TOF) *m*/*z* [M + Na]⁺ calcd for C₁₅H₁₇INaO₉ 490.9815, found 490.9825.

Compound 6b. This compound is prepared using the abovementioned general procedure using **1a** (0.272 g, 1 mmol) as the starting material, Yield: (0.437 g, 73%); $[\alpha]_D = +25.8$ (c = 1.0, CHCl₃); ¹H NMR (399.78 MHz, CDCl₃) δ 0.82 0.92 (m, 3 H), 1.21 1.37 (m, 16 H), 1.65 (q, 2H, J = 7.3 Hz), 2.07 (s, 3H), 2.11 (s, 3H), 2.11 (s, 3H), 2.40 (t, 1H, J = 7.5 Hz), 4.11 (ddd, 1H, J = 9.9, 4.6, 2.5 Hz), 4.15 (dd, 1H, J = 12.4, 2.4 Hz), 4.22 (dd, 1H, J = 12.3, 4.6 Hz), 4.53 (dd, 1H, J = 4.4, 1.6 Hz), 4.58 (dd, 1H, J = 9.4, 4.4 Hz), 5.45 (t, 1H, J = 9.7 Hz), 6.40 (d, 1H, J = 1.4 Hz); ¹³C NMR (100.53 MHz, CDCl₃) δ 14.0, 20.5, 20.6, 20.7, 22.5, 24.6, 27.2, 28.8, 29.1, 29.2, 29.3, 29.4(2C), 31.8, 33.9, 61.7, 66.9, 68.6, 71.3, 94.3, 169.2, 169.7, 170.5, 170.8; IR (CHCl₃) ν 2932, 1745, 1132, 1045 cm⁻¹; HRMS (TOF) m/z[M + Na]⁺ calcd for C₂₄H₃₉INaO₉ 621.1536, found 621.1547.

Compound 6c. This compound is prepared using the abovementioned general procedure using **1a** (0.272 g, 1 mmol) as the starting material. Yield: (0.517 g, 80%); $[\alpha]_D = +27.6$ (c = 1.0, CHCl₃); ¹H NMR (399.78 MHz, CDCl₃) δ 2.07 (s, 3H), 2.12 (s, 3H), 2.12 (s, 3H), 4.14 4.33 (m, 3H), 4.75 (d, 1H, J = 2.1 Hz), 4.78 (d, 1H, J = 4.5 Hz), 5.47–5.59 (m, 1H), 6.67 (s, 1H), 7.22 (td, 1H, J = 7.6, 1.7 Hz), 7.47 (td, 1H, J = 7.6, 1.1 Hz), 7.83 (dd, 1H, J = 7.8, 1.6 Hz), 8.04 (dd, 1H, J = 7.9, 1.0 Hz); ¹³C NMR (100.53 MHz, CDCl₃) δ 20.6, 20.8, 20.9, 27.0, 61.8, 66.9, 68.8, 72.0, 93.9, 96.1, 128.2, 131.6, 133.4, 133.5, 141.6, 163.9, 169.3, 169.9, 170.7; IR (CHCl₃) ν 3013, 2931, 1746, 1551, 1441, 1121, 1033, 661 cm⁻¹; HRMS (TOF) m/z [M + Na]⁺ calcd for C₁₉H₂₀I₂NaO₉ 668.9094, found 668.9141.

Compound 6d. This compound is prepared using the abovementioned general procedure using 1a (0.272 g, 1 mmol) as the starting material. Yield: (0.447 g, 72%); $[\alpha]_D = +19.9$ (c = 1.0, CHCl₃); ¹H NMR (399.78 MHz, CDCl₃) δ 2.06 (s, 3H), 2.10 (s, 6H), 2.67 (t, 2H, J = 5.8 Hz), 3.51 (q, 2H, J = 6.0 Hz), 4.07–4.18 (m, 2H), 4.21 (dd, 1H, J = 12.4, 4.4 Hz), 4.52 4.58 (m, 2H), 5.10 (s, 2H), 5.36 (t, 1H, J = 6.1 Hz), 5.46 (t, 1H, J = 9.4 Hz), 6.41 (s, 1H), 7.35 (m, SH); ¹³C NMR (100.53 MHz, CDCl₃) δ 20.6, 20.7, 20.9, 26.9, 34.3, 36.4, 61.7, 66.8(2C), 68.6, 71.5, 94.9, 128.0–128.5 (5C), 136.2, 156.3, 169.3, 169.8, 169.9, 170.7; IR (CHCl₃) ν 3396, 3051, 2958, 1742, 1520, 1130, 1005 cm⁻¹; HRMS (TOF) m/z [M + Na]⁺ calcd for C₂₃H₂₈INNaO₁₁ 644.0605, found 644.0597.

Compound 6e. This compound is prepared using the abovementioned general procedure using **1a** (0.272 g, 1 mmol) as the starting material. Yield: (0.470 g, 80%); mp: 131 °C; $[\alpha]_D = +7.80$ (c =1.0, CHCl₃); ¹H NMR (399.78 MHz, CDCl₃) δ 1.45 (s, 9H), 1.46 (s, 3H), 2.08 (s, 3H), 2.11 (s, 3H), 2.12 (s, 3H), 4.16 (dd, 2H, J = 14.0, 11.1 Hz), 4.24 (dd, 1H, J = 12.0, 4.0 Hz), 4.31–4.40 (m, 1H), 4.51– 4.60 (m, 2H), 5.02 (d, 1H, J = 7.1 Hz), 5.48 (t, 1H, J = 9.4 Hz), 6.40 (s, 1H); ¹³C NMR (100.53 MHz, CDCl₃) δ 18.1, 21.0, 20.7, 20.9, 26.7, 28.2 (3C), 49.0, 61.6, 66.7, 68.7, 71.6, 80.2, 95.5, 155.0, 169.3, 169.8, 170.7, 171.1; IR (CHCl₃) ν 3384, 2981, 1747, 1515, 1454, 1160, 1057, 666 cm⁻¹; HRMS (TOF) m/z [M + Na]⁺ calcd for [C₂₀H₃₀INNaO₁₁ 610.0761, found 610.0770.

Compound 6f. This compound is prepared using the abovementioned general procedure using **1a** (0.272 g, 1 mmol) as the starting material. Yield: (0.550 g, 81%); $[\alpha]_{\rm D} = +40.0$ (c = 1.0, CHCl₃); ¹H NMR (399.78 MHz, CDCl₃) δ 1.45 (s, 9H), 2.08 (s, 3H), 2.11 (s, 3H), 2.12 (s, 3H), 2.93–3.04 (m, 2H), 3.79 (s, 3H), 4.10– 4.19 (m, 2H), 4.23 (dd, 1H, J = 12.3, 4.4 Hz), 4.53 (dd, 1H, J = 9.5, 4.4 Hz), 4.57–4.66 (m, 2H), 5.46 (t, 1H, J = 9.7 Hz), 5.58 (d, 1H, J =8.0 Hz), 6.38 (s, 1H); ¹³C NMR (100.53 MHz, CDCl₃) δ 20.5, 20.6, 20.8, 26.8, 28.2 (3C), 36.9, 49.9, 52.8, 61.6, 66.8, 68.5, 71.6, 80.3, 95.3, 155.1, 168.4, 169.2, 169.7, 170.6, 171.0; IR (CHCl₃) ν 3374, 2977, 1745, 1510, 1438, 1162, 1056, 669 cm⁻¹; HRMS (TOF) m/z [M + Na]⁺ calcd for C₂₂H₃₂INNaO₁₃ 668.0816, found 668.0789

Compound 6g. This compound is prepared using the abovementioned general procedure using **1a** (0.272 g, 1 mmol) as the starting material. Yield: (0.603 g, 81%); $[\alpha]_D = +8.0$ (c = 1.0, CHCl₃); ¹H NMR (399.78 MHz, CDCl₃) δ 0.03 (s, 3H), 0.04 (s, 3H), 0.85 (s, 9H), 2.05 (s, 3H), 2.09 (s, 3H), 2.11 (s, 3H), 3.88 (dd, 1H, J = 10.3, 3.1 Hz), 4.08–4.11 (m, 2H), 4.11–4.14 (m, 1H), 4.23 (dd, 1H, J =12.5, 4.3 Hz), 4.46–4.49 (m, 1H), 4.50 (dd, 1H, J = 4.4, 1.5 Hz), 4.58 (dd, 1H, J = 9.5, 4.4 Hz), 5.15 (d, 2H, J = 10.9 Hz), 5.46 (t, 1H, J = 9.8Hz), 5.58 (d, 1H, J = 8.5 Hz), 6.42 (s, 1H), 7.32–7.39 (m, 5H); ¹³C NMR (100.53 MHz, CDCl₃) δ –5.7, –5.6, 18.2, 20.6, 20.7, 20.8, 25.7 (3C), 26.6, 56.0, 62.0, 63.4, 66.8, 67.3, 68.4, 71.6, 95.6, 128.2–128.6 (SC), 136.0, 155.9, 168.1, 169.3, 170.0, 170.7; IR (CHCl₃) ν 3365, 2934, 1747, 1512, 1427, 1117, 1056, 668 cm⁻¹; HRMS (TOF) *m*/*z* [M + Na]⁺ calcd for C₂₉H₄₂INNaO₁₂Si 774.1419, found 774.1423.

Compound 6h. This compound is prepared using the abovementioned general procedure using **1a** (0.272 g, 1 mmol) as the starting material, Yield: (0.605 g, 79%); $[\alpha]_D = +5.4$ (c = 1.0, CHCl₃); ¹H NMR (399.78 MHz, CDCl₃) δ 0.00 (s, 3H), 0.05 (s, 3H), 0.82 (s, 9H), 1.24 (d, 3H, J = 6.2 Hz), 2.03 (s, 3H), 2.09 (s, 6H), 3.98–4.14 (m, 2H), 4.22 (dd, 1H, J = 12.8, 4.3 Hz), 4.31 (dd, 1H, J = 9.3, 1.7 Hz), 4.40–4.62 (m, 3H), 5.16 (d, 2H, J = 6.6 Hz), 5.46 (t, 2H, J = 9.2Hz), 6.39 (s, 1H), 7.29–7.41 (m, 5H); ¹³C NMR (100.53 MHz, CDCl₃) δ –5.4, –4.4, 17.8, 20.5, 20.6, 20.7, 20.8, 25.5(3C), 26.6, 60.0, 61.4, 66.6, 67.3, 68.4, 68.5, 71.5, 95.5, 128.2–128.5 (5C), 135.9, 156.5, 168.4, 169.2, 169.6, 171.0; IR (CHCl₃) ν 3445, 2955, 1744, 1512, 1426, 1136, 1063, 698 cm⁻¹; HRMS (TOF) m/z [M + Na]⁺ calcd for C₃₀H₄₄INNaO₁₂Si 788.1575, found 788.1581.

Compound 7a. This compound is prepared using the abovementioned general procedure using **1b** (0.272 g, 1 mmol) as the starting material. Yield: (0.472 g, 76%); $[\alpha]_D = +41.2$ (c = 1.0, CHCl₃); ¹H NMR (399.78 MHz, CDCl₃) δ 2.01 (s, 3H), 2.08 (s, 3H), 2.18 (s, 3H), 2.51–2.69 (m, 2H), 3.48 (dt, 2H, J = 13.6, 6.4 Hz), 4.16 (d, 2H, J = 6.6 Hz), 4.30 (d, 1H, J = 4.6 Hz), 4.38 (t, 1H, J = 5.9 Hz), 4.84–4.88 (m, 1H), 5.08 (s, 2H), 5.40–5.42 (m, 2H), 6.52 (d, 1H, J =1.2 Hz), 7.31–7.37 (m, SH); ¹³C NMR (100.53 MHz, CDCl₃) δ 18.6, 20.5, 20.7, 20.8, 34.3, 36.3, 61.4, 64.6, 64.7, 66.7, 69.0, 96.1, 128.0– 128.4 (5C), 136.1, 156.2, 169.4, 169.7, 169.9, 170.4; IR (CHCl₃) ν 3383, 2951, 1745, 1519, 1427, 1130, 1059, 666 cm⁻¹; HRMS (TOF) m/z [M + Na]⁺ calcd for C₂₃H₂₈INNaO₁₁ 644.0605, found 644.0617.

Compound 7b. This compound is prepared using the abovementioned general procedure using **1b** (0.272 g, 1 mmol) as the starting material. Yield: (0.487 g, 83%); $[\alpha]_D = +22.4$ (c = 1.0, CHCl₃); ¹H NMR (399.78 MHz, CDCl₃) δ 1.42 (s, 3H), 1.44 (s, 9H), 2.05 (s, 3H), 2.09 (s, 3H), 2.19 (s, 3H), 4.12–4.25 (m, 2H), 4.31 (d, 2H, J = 4.3 Hz), 4.47 (t, 1H, J = 6.1 Hz), 4.86 4.91 (m, 1H), 5.20 (m, 1H, J = 7.3 Hz), 5.45 (s, 1H), 6.52 (s, 1H); ¹³C NMR (100.53 MHz, CDCl₃) δ 17.7, 18.5, 20.5, 20.6, 20.7, 28.1 (3C), 49.0, 61.2, 64.6 (2C), 69.0, 79.9, 96.5, 154.9, 169.2, 169.7, 170.2, 170.8; IR (CHCl₃) ν 3372, 2980, 1748, 1515, 1427, 1166, 1060, 670 cm⁻¹; HRMS (TOF) m/z[M + Na]⁺ calcd for C₂₀H₃₀INNaO₁₁ 610.0761, found 610.0771.

Compound 7c. This compound is prepared using the abovementioned general procedure using **1b** (0.272 g, 1 mmol) as the starting material. Yield: (0.556 g, 74%); $[\alpha]_D = +20.6$ (c = 1.0, CHCl₃); ¹H NMR (399.78 MHz, CDCl₃) $\delta -0.07$ (s, 3H), -0.05 (s, 3H), 0.76 (s, 9H), 1.94 (s, 3H), 1.99 (s, 3H), 2.10 (s, 3H), 3.79 (dd, 1H, J = 10.3, 3.1 Hz), 3.99 (dd, 1H, J = 10.3, 2.7 Hz), 4.07 (dd, 1H, J =15.6, 6.6 Hz), 4.16 (d, 1H, J = 4.9 Hz), 4.25–4.32 (m, 1H), 4.38 (dt, 1H, J = 8.3, 2.8 Hz), 4.71 4.79 (m, 1H), 5.05 (d, 2H, J = 4.4 Hz), 5.34 (s, 1H), 5.52 (d, 1H, J = 8.4 Hz), 6.46 (s, 2H), 7.24–7.30 (m, 5H); ¹³C NMR (100.53 MHz, CDCl₃) $\delta -5.7, -3.7, 18.0, 18.0, 20.5, 20.7,$ 20.9, 25.6 (3C), 25.7, 61.3, 63.3, 64.5, 64.6, 67.2, 69.3, 97.2, 128.2– 128.5 (5C), 136.0, 155.9, 168.1, 169.3, 170.0, 170.3; IR (CHCl₃) ν 3367, 2953, 1748, 1513, 1464, 1130, 1058, 670 cm⁻¹; HRMS (TOF) m/z [M + Na]⁺ calcd for C₂₉H₄₂INNaO₁₂Si 774.1419, found 774.1425.

Compound 7d. This compound is prepared using the abovementioned general procedure using **1b** (0.272 g, 1 mmol) as the starting material. Yield: (0.689 g, 90%); $[\alpha]_{\rm D} = +29.4$ (c = 1.0, CHCl₃); ¹H NMR (399.78 MHz, CDCl₃) $\delta -0.05$ (s, 3H), 0.00 (s, 3H), 0.78 (s, 9H), 1.20 (d, 3H, J = 6.2 Hz), 1.97 (s, 3H), 2.04 (s, 3H), 2.13 (s, 3H), 4.00–4.07 (m, 1H), 4.12 (ddd, 1H, J = 11.3, 6.5, 1.4 Hz), 4.20–4.25 (m, 2H), 4.28 (t, 1H, J = 6.6 Hz), 4.35–4.43 (m, 1H), 4.77 (t, 1H, J = 3.5 Hz), 5.08–5.16 (m, 2H), 5.36 (s, 1H), 5.41 (d, 1H, J =8.9 Hz), 6.47 (s, 1H), 7.25–7.39 (m, 5H); ¹³C NMR (100.53 MHz, CDCl₃) $\delta -5.4$, -4.3, 17.8, 18.1, 20.6, 20.8, 20.9, 20.9, 25.5(3C), 60.0, 61.3, 64.5, 64.6, 67.3, 68.4, 69.3, 97.3, 128.3, 128.6, 136.0, 156.6, 168.6, 169.3, 169.9, 170.3; IR (CHCl₃) ν 3446, 2934, 1749, 1511, 1426, 1136, 1067, 699 cm⁻¹; HRMS (TOF) m/z [M + Na]⁺ calcd for C₃₀H₄₄INNaO₁₂Si 788.1575, found 788.1572.

Compound 8a. This compound is prepared using the abovementioned general procedure using 1c (0.560 g, 1 mmol) as the starting material. Yield: (0.691 g, 76%); $[\alpha]_{\rm D}$ = +31.5 (c = 1.0, CHCl₃); ¹H NMR (399.78 MHz, CDCl₃) δ 1.98 (s, 3H), 2.06 (s, 3H), 2.07 (s, 3H), 2.12 (s, 3H), 2.15 (s, 3H), 2.16 (s, 3H), 2.65 (t, 2H, J = 5.8 Hz), 3.50 (q, 2H, J = 5.9 Hz), 3.92 3.98 (m, 1H), 3.99 4.14 (m, 4H), 4.18 (dd, 1H, J = 11.3, 6.8 Hz), 4.43 (dd, 1H, J = 12.1, 1.7 Hz), 4.49–4.54 (m, 1H), 4.61 (d, 1H, J = 8.0 Hz), 4.67 (dd, 1H, J = 7.2, 4.1 Hz), 5.00 (dd, 1H, J = 10.5, 3.5 Hz), 5.10 (s, 2H), 5.16 (dd, 1H, J = 10.4, 7.9 Hz), 5.30 (t, 1H, J = 6.0 Hz), 5.36 5.40 (m, 1H), 6.35 (d, 1H, J = 2.5 Hz), 7.32 7.38 (m, 5H); ¹³C NMR (100.53 MHz, CDCl₃) δ 20.5, 20.6 (2C), 20.7, 20.8, 21.0, 26.9, 34.4, 36.4, 61.1, 61.7, 66.7, 66.8, 69.0, 69.4, 70.7, 70.9, 71.8, 75.4, 94.7, 101.4, 128.1-128.5 (5C), 136.3, 156.2, 169.3, 169.5, 170.0, 170.1 (2C), 170.4 (2C); IR (CHCl_3) ν 3378, 2929, 1747, 1516, 1461, 1133, 1076, 668 cm⁻¹; HRMS (TOF) $m/z [M + Na]^+$ calcd for $C_{35}H_{44}INNaO_{19}$ 932.1449, found 932.1443.

Compound 8b. This compound is prepared using the abovementioned general procedure using 1c (0.560 g, 1 mmol) as the starting material. Yield: (0.727 g, 83%); $[\alpha]_D = +25.8$ (c = 1.0, CHCl₃); ¹H NMR (399.78 MHz, CDCl₃) δ 1.44 (s, 9H), 1.98 (s, 3H), 2.03 (s, 3H), 2.08 (d, 6H, J = 1.1 Hz), 2.14 (s, 3H), 2.15 (s, 3H), 2.17 (s, 3H), 3.99 (t, 1H, J = 6.6 Hz), 4.05–4.13 (m, 3H), 4.14–4.21 (m, 2H), 4.29–4.36 (m, 1H), 4.43 (d, 1H, J = 11.8 Hz), 4.50–4.55 (m, 1H), 4.64 (d, 1H, J = 7.9 Hz), 4.68 (s, 1H), 5.02 (dd, 1H, J = 0.4, 3.3 Hz), 5.15 (dd, 1H, J = 10.4, 8.1 Hz), 5.23 (d, 1H, J = 7.1 Hz), 5.38 (d, 1H, J = 3.4 Hz), 6.35 (s, 1H); ¹³C NMR (100.53 MHz, CDCl₃) δ 17.7, 20.2, 20.3 (2C), 20.4, 20.5, 20.7, 26.7, 28.0 (3C), 48.9, 61.0, 61.4, 66.6 68.8, 69.1, 70.4, 70.6, 71.6, 75.0, 80.0, 95.0, 101.1, 154.8, 169.0, 169.2, 169.7, 169.8, 170.1 (2C), 171.1; IR (CHCl₃) ν 3382, 2981, 1747, 1514, 1453, 1164, 1053, 666 cm⁻¹; HRMS (TOF) m/z [M + Na]⁺ calcd for C₃₂H₄₆INNaO₁₉ 898.1606, found 898.1613.

Compound 8c. This compound is prepared using the abovementioned general procedure using 1c (0.560 g, 1 mmol) as the starting material. Yield: (0.774 g, 80%); $[\alpha]_{\rm D} = +35.4$ (c = 1.0, CHCl₃); ¹H NMR (399.78 MHz, CDCl₃) δ 1.45 (s, 9H), 1.98 (s, 3H), 2.08 (s, 6H), 2.15 (s, 6H), 2.17 (s, 3H), 2.90–3.09 (m, 2H), 3.78 (s, 3H), 3.95 (t, 1H, J = 6.7 Hz), 4.01–4.15 (m, 4H), 4.18 (dd, 1H, J =11.2, 6.7 Hz), 4.46 (dd, 1H, J = 12.0, 1.5 Hz), 4.54 (s, 1H), 4.61 (dd, 3H, J = 12.1, 7.4 Hz), 5.00 (dd, 1H, J = 10.4, 3.5 Hz), 5.15 (dd, 1H, J =10.4, 7.9 Hz), 5.32 5.43 (m, 1H), 5.50 (d, 1H, J = 8.1 Hz), 6.33 (d, 1H, J = 2.0 Hz); ¹³C NMR (100.53 MHz, CDCl₃) δ 20.5, 20.6, 20.6, 20.7, 20.8, 20.9, 27.0, 28.2 (3C), 36.9, 49.9, 52.9, 61.1, 61.6, 66.8, 69.0, 69.1, 70.7, 70.9, 72.0, 75.2, 80.4, 95.2, 101.4, 155.2, 168.7, 169.3, 169. 5, 170.0, 170.1, 170.4 (2C), 171.1; IR (CHCl₃) ν 3678, 2929, 1746, 1512, 1434, 1164, 1052, 756 cm⁻¹; HRMS (TOF) m/z [M + Na]⁺ calcd for C₃₄H₄₈INNaO₂₁ 956.1661, found 956.1667.

Compound 8d. This compound is prepared using the abovementioned general procedure using 1c (0.560 g, 1 mmol) as the starting material. Yield: (0.832 g, 80%); $[\alpha]_{\rm D}$ = +18.0 (c = 1.0, CHCl₃); ¹H NMR (399.78 MHz, CDCl₃) δ 0.03 (s, 3H), 0.04 (s, 3H), 0.85 (s, 9H), 1.98 (s, 3H), 2.07 (s, 6H), 2.10 2.18 (m, 9H), 3.88 (dd, 1H, J = 10.4, 3.1 Hz), 3.94 (t, 1H, J = 6.7 Hz), 3.97 4.04 (m, 1H), 4.07 (m, 4H), 4.18 (dd, 1H, J = 11.2, 6.7 Hz), 4.41 (d, 1H, J = 13.6 Hz), 4.41-4.53 (m, 2H), 4.61 (d, 1H, J = 7.9 Hz), 4.72 (dd, 1H, J = 7.0, 4.1 Hz), 5.00 (dd, 1H, J = 10.4, 3.4 Hz), 5.06–5.23 (m, 3H), 5.37 (d, 1H, *J* = 3.2 Hz), 5.58 (d, 1H, *J* = 8.6 Hz), 6.39 (d, 1H, *J* = 2.4 Hz), 7.32– 7.40 (m, 5H); ¹³C NMR (100.53 MHz, CDCl₃) δ –5.6, –5.6, 18.1, 20.5, 20.6, 20.6, 20.7, 20.8, 20.9, 25.7 (3C), 26.5, 55.9, 61.1, 61.6, 63.3, 66.7, 67.2, 69.0, 69.3, 70.7, 70.9, 71.8, 75.4, 95.4, 101.4, 128.2-128.5 (5C), 136.1, 155.9, 168.3, 169.2, 169.2, 170.0, 170.1, 170.4 (2C); IR (CHCl₃) ν 3369, 2935, 1748, 1514, 1425, 1112, 1057, 699 cm⁻¹; HRMS (TOF) m/z [M + K]⁺ calcd for C₄₁H₅₈IKNO₂₀Si 1078.2003, found 1078.2015.

Compound 8e. This compound is prepared using the abovementioned general procedure using 1c (0.560 g, 1 mmol) as the starting material. Yield: (0.811 g, 77%); $[\alpha]_{D} = +13.0$ (c = 1.0, CHCl₃); ¹H NMR (399.78 MHz, CDCl₃) δ -0.07 (s, 3H), -0.02 (s, 3H), 0.75 (s, 9H), 1.17 (d, 3H, J = 6.2 Hz), 1.89 (s, 3H), 1.99 (s, 6H), 2.02 (s, 3H), 2.05 (s, 3H), 2.07 (s, 3H), 3.85 3.95 (m, 2H), 3.96-4.05 (m, 2H), 4.09 (dd, 2H, J = 11.2, 6.8 Hz), 4.23 (dd, 1H, J = 9.4, 1.6 Hz), 4.35 (m, 2H), 4.46 (dd, 1H, J = 4.0, 2.2 Hz), 4.55 (d, 1H, J = 7.9 Hz), 4.59 (dd, 1H, J = 8.0, 4.8 Hz), 4.93 (dd, 1H, J = 10.4, 3.3 Hz), 5.00–5.14 (m, 3H), 5.29 (d, 1H, J = 3.3 Hz), 5.40 (d, 1H, J = 9.5 Hz), 6.29 (d, 1H, J = 1.9 Hz), 7.23-7.36 (m, 5H); ¹³C NMR (100.53 MHz, CDCl₃) δ -5.5, -4.4, 17.7, 20.4, 20.4, 20.5, 20.5, 20.6, 20.7, 20.7, 25.4 (3C), 26.8, 59.8, 61.0, 61.4, 66.6, 67.2, 68.4, 68.9, 69.1, 70.5, 70.8, 71.7, 74.9, 95.2, 101.1, 128.1-128.4 (5C), 136.0, 156.4, 168.9, 169.1, 169.1, 169.9, 169.9, 170.2, 170.3; IR (CHCl₃) ν 3445, 2932, 1745, 1512, 1462, 1134, 1071, 698 cm⁻¹; HRMS (TOF) m/z [M + K]⁺ calcd for C42H60IKNO20Si 1092.2160, found 1092.2193.

Compound 9a. This compound is prepared using the abovementioned general procedure using **6g** (0.750 g, 1 mmol) as the starting material. Yield: (0.494 g, 76%); $[\alpha]_D = +40.7$ (c = 1.0, CHCl₃); ¹H NMR (399.78 MHz, CDCl₃) δ 2.03 (s, 3H), 2.07 (s, 3H), 2.09 (s, 3H), 3.80 (s, 3H), 3.92–4.01 (m, 3H), 4.12 (dd, 1H, J = 12.3, 2.3 Hz), 4.18 (dd, 1H, J = 12.3, 5.0 Hz), 4.48 (dd, 1H, J = 4.3, 1.3 Hz), 4.54 (dt, 2H, J = 9.2, 5.6 Hz), 5.14 (d, 3H, J = 5.8 Hz), 5.31 (t, 1H, J =9.6 Hz), 5.82 (d, 1H, J = 8.2 Hz), 7.31–7.39 (m, 5H); ¹³C NMR (100.53 MHz, CDCl₃) δ 20.5, 20.6, 20.8, 28.5, 52.8, 54.1, 61.9, 67.1, 68.7 (2C), 68.9, 69.6, 101.8, 128.0–128.4 (5C), 135.9, 155.7, 169.3, 169.6, 170.0, 170.5; IR (CHCl₃) ν 3378, 2930, 1742, 1519, 1452, 1123, 1051, 699 cm⁻¹; HRMS (TOF) m/z [M + Na]⁺ calcd for C₂₄H₃₀INNaO₁₂ 674.0710, found 674.0709.

Compound 9b. This compound is prepared using the abovementioned general procedure using **6h** (0.750 g, 1 mmol) as the starting material. Yield: (0.485 g, 73%); $[\alpha]_{\rm D}$ = +35.6 (*c* = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 1.31 (d, 3H, *J* = 6.4 Hz), 2.05 (s, 3H), 2.07 (s, 3H), 2.09 (s, 3H), 3.78 (s, 3H), 4.06 (ddd, 1H, J = 9.8, 5.2, 2.4 Hz), 4.13 (dd, 1H, J = 12.2, 2.3 Hz), 4.20 (dd, 1H, J = 12.2, 5.3 Hz), 4.32–4.39 (m, 2H), 4.44 (dd, 1H, J = 9.7, 2.3 Hz), 4.53 (dd, 1H, J = 9.3, 4.3 Hz), 5.16 (d, 3H, J = 9.4 Hz), 5.31 (t, 1H, J = 9.6 Hz), 5.48 (d, 1H, J = 9.6 Hz), 7.30–7.44 (m, 5H); ¹³C NMR (101 MHz, CDCl₃) δ 17.8, 20.6, 20.6, 20.9, 28.8, 52.7, 58.5, 62.2, 67.3, 67.5, 68.7, 69.7, 77.3, 102.6, 128.2–128.5 (5C), 135.9, 156.5, 169.4, 169.7, 170.6, 170.6; IR (CHCl₃) ν 3358, 2950, 1744, 1518, 1452, 1175, 1038, 643 cm⁻¹; HRMS (TOF) m/z [M + Na]⁺ calcd for C₂₅H₃₂INNaO₁₂ 688.0867, found 688.0861.

Compound 10a. This compound is prepared by the reported procedure¹¹ using **9a** (0.400 g, 0.6 mmol) as the starting material. Yield: (0.210 g, 65%); $[\alpha]_D = +48.6$ (c = 1.0, CHCl₃); ¹H NMR (399.78 MHz, CDCl₃) δ 1.73 (td, 1H, J = 12.9, 3.7 Hz), 1.93 (s, 3H), 1.95 (s, 3H), 2.00 (s, 3H), 2.13 (dd, 1H, J = 13.1, 5.3 Hz), 3.71 (s, 3H), 3.84 (s, 3H), 3.96 (d, 1H, J = 12.2 Hz), 4.19 (dd, 1H, J = 12.2, 4.7 Hz), 4.48 (d, 1H, J = 8.0 Hz), 4.82–4.93 (m, 2H), 5.07 (s, 2H), 5.15 (td, 1H, J = 11.0, 5.4 Hz), 5.67 (d, 1H, J = 8.4 Hz), 7.24–7.33 (m, SH); ¹³C NMR (100.53 MHz, CDCl₃) δ 20.7 (2C), 20.9, 34.7, 52.7, 54.2, 62.1, 67.2, 68.3, 68.4, 68.7, 69.0, 97.7, 128.1–128.5 (5C), 136.0, 155.8, 169.8, 170.1, 170.3, 170.7; IR (CHCl₃) ν 3356, 2956, 1740, 1518, 1450, 1132, 1047, 668 cm⁻¹; HRMS (TOF) m/z [M + Na]⁺ calcd for C₂₄H₃₁NNaO₁₂ 548.1744, found 548.1753.

Compound 10b. This compound is prepared by the reported procedure¹¹ using **9b** (0.400 g, 0.6 mmol) as the starting material. Yield: (0.202 g, 61%); $[\alpha]_D = +39.8$ (c = 1.0, CHCl₃); ¹H NMR (399.78 MHz, CDCl₃) δ 1.30 (d, 3H, J = 6.4 Hz), 1.77 (td, 1H, J = 12.7, 3.8 Hz), 2.00 (s, 3H), 2.04 (s, 3H), 2.04 (m, 1H), 2.07 (s, 3H), 3.74 (s, 3H), 3.98–4.07 (m, 2H), 4.27 (dd, 1H, J = 12.0, 4.9 Hz), 4.34 (dd, 1H, J = 6.4, 2.2 Hz), 4.40 (dd, 1H, J = 9.7, 2.2 Hz), 4.88–5.00 (m, 2H), 5.15 (s, 2H), 5.15–5.29 (m, 1H), 5.48 (d, 1H, J = 9.8 Hz), 7.31–7.43 (m, 5H); ¹³C NMR (100.53 MHz, CDCl₃) δ 18.2, 20.6 (2C), 20.9, 35.1, 52.5, 58.5, 62.2, 67.2, 68.3, 68.5, 69.3, 76.2, 98.4, 128.1–128.4 (5C), 136.0, 156.4, 169.8, 170.1, 170.6, 170.9; IR (CHCl₃) ν 3361, 2955, 1742, 1516, 1453, 1128, 1051, 700 cm⁻¹; HRMS (TOF) m/z [M + Na]⁺ calcd for C₂₅H₃₃NNaO₁₂ 562.1900, found 562.1909.

Compound 11a. This compound is prepared using the abovementioned general procedure using 7c (0.750 g, 1 mmol) as the starting material. Yield: (0.474 g, 73%); $[\alpha]_D = +35.6$ (c = 1.0, CHCl₃); ¹H NMR (399.78 MHz, CDCl₃) δ 2.03 (s, 3H), 2.07 (s, 3H), 2.16 (s, 3H), 3.79 (s, 3H), 3.97 (s, 2H), 4.12 (d, 1H, J = 10.8 Hz), 4.20 (t, 3H, J = 9.9 Hz), 4.50 4.63 (m, 1H), 4.85 (s, 1H), 5.13 (s, 2H), 5.28 (s, 1H), 5.35 (s, 1H), 5.78 (d, 1H, J = 7.5 Hz), 7.29–7.40 (m, 5H); ¹³C NMR (100.53 MHz, CDCl₃) δ 20.6, 20.7, 20.8, 20.9, 23.8, 52.8, 54.1, 61.9, 65.2, 67.1, 67.6, 68.9, 102.8, 128.0–128.5 (5C), 136.0, 155.8, 169.4, 169.9, 170.0, 170.5; IR (CHCl₃) ν 3361, 2953, 1744, 1517, 1429, 1119, 1053, 669 cm⁻¹; HRMS (TOF) m/z [M + Na]⁺ calcd for C₂₄H₃₀INNaO₁₂ 674.0710, found 674.0708.

Compound 11b. This compound is prepared using the abovementioned general procedure using 7d (0.750 g, 1 mmol) as the starting material. Yield: (0.478 g, 72%); $[\alpha]_D = +40.4$ (c = 1.0, CHCl₃); ¹H NMR (399.78 MHz, CDCl₃) δ 1.31 (d, 3H, J = 6.4 Hz), 2.04 (s, 3H), 2.06 (s, 3H), 2.16 (s, 3H), 3.79 (s, 3H), 4.09 (d, 1H, J =5.0 Hz), 4.11–4.15 (m, 1H), 4.20 (dd, 1H, J = 11.4, 7.2 Hz), 4.30– 4.35 (m, 1H), 4.37 (dd, 1H, J = 6.4, 2.3 Hz), 4.42 (dd, 1H, J = 9.7, 2.2 Hz), 4.79–4.84 (m, 1H), 5.14 (s, 2H), 5.30 (s, 1H), 5.35 (s, 1H), 5.46 (d, 1H, J = 9.7 Hz), 7.31–7.41 (m, 5H); ¹³C NMR (100.53 MHz, CDCl₃) δ 18.0, 20.6, 20.7, 20.8, 20.9, 52.7, 58.5, 62.0, 65.0, 65.3, 67.3 (2C), 77.1, 104.0, 128.1–128.5 (5C), 136.0, 156.5, 169.5, 169.9, 170.4, 170.7; IR (CHCl₃) ν 3359, 2951, 1745, 1518, 1452, 1174, 1038, 702 cm⁻¹; HRMS (TOF) m/z [M + Na]⁺ calcd for C₂₅H₃₂IN NaO₁₂ 688.0867, found 688.0861.

Compound 12a. This compound is prepared by the reported procedure¹¹ using **11a** (0.400 g, 0.6 mmol) as the starting material. Yield: (0.193 g, 60%); $[\alpha]_D = +62.6$ (c = 1.0, CHCl₃); ¹H NMR (399.78 MHz, CDCl₃) δ 1.76 (dd, 1H, J = 12.9, 4.9 Hz), 1.91 (s, 3H), 1.96 (s, 3H), 2.01 (dd, 1H, J = 12.8, 3.6 Hz), 2.05 (s, 3H), 3.71 (s, 3H), 3.85 (d, 2H, J = 3.0 Hz), 3.99 (m, 3H), 4.44–4.54 (m, 1H), 4.90 (d, 1H, J = 3.1 Hz), 5.07 (d, 2H, J = 1.8 Hz), 5.12 (dt, 1H, J = 12.5, 4.2 Hz), 5.24 (d, 1H, J = 2.4 Hz), 5.67 (d, 1H, J = 8.3 Hz), 7.23–7.33 (m,

5H); ¹³C NMR (100.53 MHz, CDCl₃) δ 20.7, 20.7, 20.8, 29.9, 52.7, 54.2, 62.4, 65.8, 66.4, 67.2 (2C), 68.4, 98.2, 128.1–128.5 (5C), 136.0, 155.9, 170.0, 170.2, 170.4, 170.5; IR (CHCl₃) ν 3356, 2956, 1744, 1519, 1449, 1164, 1033, 701 cm⁻¹; HRMS (TOF) m/z [M + Na]⁺ calcd for C₂₄H₃₁N NaO₁₂ 548.1744, found 548.1754.

Compound 12b. This compound is prepared by the reported procedure¹¹ using **11b** (0.400 g, 0.6 mmol) as the starting material. Yield: (0.209 g, 63%); $[\alpha]_D = +102.8$ (c = 1.0, CHCl₃); ¹H NMR (399.78 MHz, CDCl₃) δ 1.30 (d, 3H, J = 6.4 Hz), 1.70 (dd, 1H, J = 12.7, 5.0 Hz), 1.98 (s, 3H), 2.04 (s, 3H), 2.04 (m, 1H), 2.12 (s, 3H), 3.75 (s, 3H), 4.07 (dd, 2H, J = 6.4, 2.2 Hz), 4.18 (t, 1H, J = 6.5 Hz), 4.35 (dd, 1 H, J = 6.4, 2.1 Hz), 4.39 (dd, 1H, J = 9.8, 2.1 Hz), 4.98 (d, 1H, J = 3.2 Hz), 5.15 (s, 2H), 5.15–5.21 (m, 1H), 5.31 (d, 1H, J = 2.1 Hz), 5.44 (d, 1H, J = 9.7 Hz), 7.32–7.41 (m, 5H); ¹³C NMR (100.53 MHz, CDCl₃) δ 18.3, 20.6, 20.7, 20.8, 30.2, 52.5, 58.6, 62.5, 65.8, 66.5, 67.1, 67.2, 76.1, 99.1, 128.1–128.5 (5C), 136.0, 156.5, 170.1, 170.2, 170.4, 171.1; IR (CHCl₃) ν 3358, 2955, 1744, 1517, 1452, 1169, 1028, 701 cm⁻¹; HRMS (TOF) m/z [M + Na]⁺ calcd for C₂₅H₃₃NNaO₁₂ 562.1900, found 562.1909.

ASSOCIATED CONTENT

S Supporting Information

Copies of ¹H, ¹³C, and DEPT NMR spectra for all compounds, crystallographic data of compound **6e**, and FE-SEM images of micelles. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: s.hotha@iiserpune.ac.in.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

S.H. thanks the DST, New Delhi for the SwarnaJayanthi Fellowship, and M.I. thanks CSIR and N.D.T. thanks IISER Pune for the financial support.

REFERENCES

(1) (a) Escorihuela, J.; Burguete, M. I.; Luis, S. V. Chem. Soc. Rev. 2013, 42, 5595–5617. (b) Shirakawa, S.; Maruoka, K. Angew. Chem., Int. Ed. 2013, 52, 4312–4348. (c) Sheldon, R. A. Chem. Soc. Rev. 2012, 41, 1437–1451. (d) Weissbuch, I.; Lahav, M. Chem. Rev. 2011, 111, 3236–3267.

(2) (a) Kunishima, M.; Kikuchi, K.; Kawai, Y.; Hioki, K. Angew. Chem., Int. Ed. 2012, 51, 2080–2083. (b) Li, J.; Tang, Y.; Wang, Q.; Xuefeng, L.; Zhang, X.; Zhu, J.; Li, L.; Deng, J. J. Am. Chem. Soc. 2012, 134, 18522–18525. (c) Van Horn, W. D.; Ogilvie, M. E.; Flynn, P. F. J. Am. Chem. Soc. 2009, 131, 8030–8039. (d) Correa, N. M.; Zorzan, D. H.; D'Anteo, L.; Lasta, E.; Chiarini, M.; Cerichelli, G. J. Org. Chem. 2004, 69, 8231–8238.

(3) (a) Correa, N. M.; Silber, J. J.; Riter, R. E.; Levinger, N. E. *Chem. Rev.* **2012**, *112*, 4569–4602. (b) Klíčovà, L.; Šebej, P.; Štacko, P.; Filippov, S.; Bogomolova, A.; Padilla, M.; Klàn, P. *Langmuir* **2012**, *28*, 15185–15192. (c) Gaidamauskas, E.; Cleaver, D. P.; Chatterjee, P. B.; Crans, D. C. *Langmuir* **2010**, *26*, 13153–13161.

(4) (a) Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2002, 102, 2523–2584. (b) Stang, P. J. J. Org. Chem. 2009, 74, 2–20.

(5) (a) Pandit, P.; Gayen, K. S.; Khamarui, S.; Chatterjee, N.; Maiti, D. K. Chem. Commun. 2011, 47, 6933–6935. (b) Khamarui, S.; Sarkar, D.; Pandit, P.; Maiti, D. K. Chem. Commun. 2011, 47, 12667–12669.
(c) Chatterjee, N.; Pandit, P.; Halder, S.; Patra, A.; Maiti, D. K. J. Org. Chem. 2008, 73, 7775–7778. (d) Pandit, P.; Chatterjee, N.; Halder, S.; Hota, S. K.; Patra, A.; Maiti, D. K. J. Org. Chem. 2009, 74, 2581–2584.
(6) Kirschning, A. J. Org. Chem. 1995, 60, 1228–1232.

(7) 2-Deoxy glycosides through hypervalent iodine reagents: (a) Shi, L.; Kim, Y.-J.; Gin, D. Y. J. Am. Chem. Soc. 2001, 123, 6939–6940.

The Journal of Organic Chemistry

(b) Kirschning, A.; Plumeier, C.; Rose, L. Chem. Commun. 1998, 33-34. (c) Mironov, Y. V.; Sherman, A. A.; Nifantiev, N. E. Tetrahedron Lett. 2004, 45, 9107-9110. (d) Kirschning, A.; Hashem, M. A.; Moneneschein, H.; Rose, L.; Schöning, K.-U. J. Org. Chem. 1999, 64, 6522-6526. (e) Roush, W. R.; Naravan, S.; Bennett, C. E.; Briner, K. Org. Lett. 1999, 1, 895-897. (f) Kirschning, A.; Jesberger, M.; Schönberger, A. Org. Lett. 2001, 3, 3623-3626. (g) Hashem, M. A.; Jung, A.; Ries, M.; Kirschning, A. Synlett 1998, 195-197. (h) Rodríguez, M. A.; Boutureira, O.; Arnés, X.; Matheu, M. I.; Díaz, Y.; Castillón, S. J. Org. Chem. 2005, 70, 10297-10310. 2-Deoxy glycosides without hypervalent iodine reagents: (i) Issa, J. P.; Lloyd, D.; Steliotes, E.; Bennett, C. S. Org. Lett. 2013, 15, 4170-4173. (j) Kim, K. S.; Park, J.; Lee, Y. J.; Seo, Y. S. Angew. Chem., Int. Ed. 2003, 42, 459-462. (k) Baryal, K. N.; Zhu, D.; Li, X.; Zhu, J. Angew. Chem., Int. Ed. 2013, 52, 8012-8016. (1) Tanaka, H.; Yoshizawa, A.; Takahashi, T. Angew. Chem., Int. Ed. 2007, 46, 2505-2507. (m) Roush, W. R.; Bennett, C. E. J. Am. Chem. Soc. 2000, 122, 6124-6125. (n) Kirschning, A.; Jesberger, M.; Monenschein, H. Tetrahedron Lett. 1999, 40, 8999-9002. (o) Muraki, T.; Yokoyama, M.; Togo, H. J. Org. Chem. 2000, 65, 4679-4684.

(8) (a) Haukaas, M. H.; O'Doherty, G. A. Org. Lett. 2001, 3, 3899–3992.
(b) Haukaas, M. H.; O'Doherty, G. A. Org. Lett. 2002, 4, 1771–1774.
(c) Yu, X.; O'Doherty, G. A. Org. Lett. 2008, 10, 4529–4532.
(d) Zhou, M.; O'Doherty, G. A. Org. Lett. 2008, 10, 2283–2286.

(9) Gammon, D. W.; Kinfe, H. K.; De Vos, D. E.; Jacobs, P. A.; Sels, B. F. Tetrahedron Lett. **2004**, 45, 9533–9536.

(10) See Supporting Information for spectral charts, crystallographic data for compound **6e**, and FE-SEM images of micelles.

(11) Quian, Y.; Feng, J.; Parvez, M.; Ling, C.-C. J. Org. Chem. 2012, 77, 96–107.

(12) Koposov, A. Y.; Boyarskikh, V. V.; Zhdankin, V. V. Org. Lett. 2004, 6, 3613-3615.

(13) Crystal data of compound **6e** (CCDC 978459): $C_{20}H_{29}INO_{11}$, M = 586.34, monoclinic, space group P2(1), a = 9.1343(7), b = 6.8955(5), c = 20.2243(15) Å, V = 1273.56(16) Å³, Z = 2, $D_{calcd} = 1.529$ g cm⁻¹, T = 173(2) K, $\mu = 10.370$ mm⁻¹, F(000) = 594, $\lambda = Cu$ K $\alpha = 1.5418$ Å, reflections measured 2979, 2954 unique, observed with $I > 2\sigma(I)$, final $R_1 = 0.0328$, $wR_2 = 0.0830$. See Supporting Information for the ORTEP diagram and other details.

(14) (a) Shaikh, A. Y.; Sureshkumar, G.; Pati, D.; Gupta, S. S.; Hotha, S. Org. Biomol. Chem. **2011**, 9, 5951–5959. (b) Pati, D.; Shaikh, A. Y.; Hotha, S.; Gupta, S. S. Poly. Chem. **2011**, 2, 805–811. (c) Pati, D.; Shaikh, A. Y.; Das, S.; Nareddy, P. K.; Swamy, M. J.; Hotha, S.; Gupta, S. S. Biomacromolecules **2012**, 13, 1287–1295.

(15) Weymouth-Wilson, A. C. Nat. Prod. Rep. 1997, 14, 99-110.

(16) (a) Kessler, V. H.; Kottenhahn, M.; Kling, A.; Kolar, C. Angew. Chem. 1987, 99, 919–921. (b) Verma, V. P.; Wang, C.-C. Chem.—Eur. J. 2013, 19, 846–851. (c) Nogueira, J. M.; Nguyen, S. H.; Bennett, C. S. Org. Lett. 2011, 13, 2814–2817.

(17) For Lewis acid mediated deprotection of silyl ethers under anhydrous conditions: (a) King, S. A.; Pipik, B.; Thompson, A. S.; Decamp, A.; Verhoeven, T. R. *Tetrahedron Lett.* **1995**, *36*, 4563–4566.
(b) Shing, T. K. M.; Jiang, Q.; Mak, T. C. W. J. Org. Chem. **1998**, *63*, 2056–2057.